PyRBIT
See also
Home page
Exponential Forgetting Model
ACT-R Model
Memory Utilities
Evaluating the informativeness of a schedule
Comparing block recall percentages, power analysis
API reference
pyrbit.abc
pyrbit.actr
pyrbit.design
pyrbit.ef
pyrbit.information
pyrbit.mem_utils
pyrbit.mle_utils
pyrbit.mle_utils.CI_asymptotical
pyrbit.mle_utils.compute_summary_statistics_estimation
pyrbit.mle_utils.confidence_ellipse
confidence_ellipse()
pyrbit.mle_utils.isPD
pyrbit.mle_utils.mle_sequence
pyrbit.mle_utils.nearestPD
pyrbit.mle_utils.InvalidConfidenceEllipsisError
pyrbit.plot_utils
PyRBIT
pyrbit
pyrbit.mle_utils
pyrbit.mle_utils.confidence_ellipse
View page source
pyrbit.mle_utils.confidence_ellipse
confidence_ellipse
(
inferred_parameters
,
estimated_covariance_matrix
,
confidence_levels
=
[0.68,
0.95]
,
ax
=
None
,
colors
=
['#B0E0E6',
'#87CEEB']
,
plot_kwargs
=
{'color':
'red',
'label':
'ML
estimate',
'marker':
'D'}
)
[source]
estimated_covariance_matrix = numpy.linalg.inv(J)