Evaluating the informativeness of a schedule

The information submodule has utilities to evaluate the informativeness of a schedule, as given by the average cumulative Fisher information. For example, the code below can be used to evaluate the informativeness of an iid schedule.

from pyrbit.ef import ExponentialForgetting
from pyrbit.information import gen_hessians, compute_full_observed_information

import matplotlib.pyplot as plt

ALPHA_TRUE = 1e-2
BETA_TRUE = 4e-1
SEED = 999
rng = numpy.random.default_rng(seed=SEED)
REPETITION = 1000
SUBSAMPLE = 15  # use a subsample such that N/subsample is integer. A ratio of 10 as used here should be fine for most cases.
N = 150
subsample_sequence = numpy.logspace(0.5, numpy.log10(N), int(N / SUBSAMPLE))

# IID schedule --- This is what you want to modify to evaluate a different schedule
def play_iid_schedule(ef, N):
    k_vector = rng.integers(low=-1, high=10, size=N)
    deltas = rng.integers(low=1, high=5000, size=N)
    recall_probs = simulate_arbitrary_traj(ef, k_vector, deltas)
    recall = [rp[0] for rp in recall_probs]
    k_repetition = [k for k in k_vector]
    return recall, deltas, k_repetition

# helpfer function
def simulate_arbitrary_traj(ef, k_vector, deltas):
    recall = []
    for k, d in zip(k_vector, deltas):
        ef.update(0, 0, N=(k + 1))
        recall.append(ef.query_item(0, d))
    return recall

ef = ExponentialForgetting(1, ALPHA_TRUE, BETA_TRUE, seed=SEED)
play_schedule = play_iid_schedule
play_schedule_args = (N,)

optim_kwargs = {
    "method": "L-BFGS-B",
    "bounds": [(1e-5, 0.1), (0, 0.99)],
    "guess": (1e-3, 0.7),
    "verbose": False,
}
filename = None  # change if you want to save the data (json)
json_data, _ = gen_hessians(
    N,
    REPETITION,
    [ALPHA_TRUE, BETA_TRUE],
    ef,
    play_schedule,
    subsample_sequence,
    play_schedule_args=play_schedule_args,
    optim_kwargs=optim_kwargs,
    filename=filename,
)

# reshaping the output of gen_hessians
recall_array = numpy.asarray(json_data["recall_array"])
observed_hessians = numpy.asarray(json_data["observed_hessians"])
observed_cum_hessians = numpy.asarray(json_data["observed_cum_hessians"])
estimated_parameters = numpy.asarray(json_data["estimated_parameters"])
recall_array = recall_array.transpose(1, 0)

# parameters for the information plots
recall_kwargs = {
    "x_bins": 10,
}
observed_information_kwargs = {"x_bins": 10, "cum_color": "orange"}

fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 15))

(
    fischer_information,
    agg_data,
    cumulative_information,
    cum_inf,
) = compute_full_observed_information(
    [ALPHA_TRUE, BETA_TRUE],
    recall_array,
    observed_hessians,
    estimated_parameters,
    subsample_sequence,
    axs=axs.ravel(),
    recall_kwargs=recall_kwargs,
    observed_information_kwargs=observed_information_kwargs,
    bias_kwargs=None,
    std_kwargs=None,
)

plt.tight_layout(w_pad=2, h_pad=2)
plt.show()

Currently, this evaluation assumes the exponential forgetting model, but the ACT-R model could be included — just file an issue!