Exponential Forgetting

The Exponential Forgetting Model

The exponential forgetting (EF) model follows from Ebbinghaus’ forgetting curve. According to this model, the probability \(p\) for a subject to correctly recall an item is given by

\[p = \exp{(-\alpha (1-\beta)^k \Delta t)}, \quad \alpha \in \mathbb{R}^+, \beta \in [0,1],\]

where \(\alpha\) and \(\beta\) are two memory parameters, \(k\) is the number of times the item has been previously seen by the subject (repetition number) and \(\Delta_t\) is the time that has elapsed since the last time that item was seen by the subject (delay). The parameter \(\alpha\) (positive) is the initial forgetting rate: the lower \(\alpha\), the slower the forgetting and the better the recall. This rate gets reduced by \((1-\beta)\) (between 0 and 1) with each repetition which further slows the rate of forgetting, and thus the higher the \(\beta\), the better the recall.

The EF class

See the API Reference

Worked out Example with the EF model

from pyrbit.mle_utils import CI_asymptotical, confidence_ellipse
from pyrbit.ef import (
    ExponentialForgetting,
    diagnostics,
    identify_ef_from_recall_sequence,
    ef_observed_information_matrix,
    covar_delta_method_log_alpha,
)
from pyrbit.mem_utils import BlockBasedSchedule, experiment
import numpy
import matplotlib.pyplot as plt

SEED = None
N = 10000
alpha = 0.001
beta = 0.4

# Initialize an EF memory model with 1 item
ef = ExponentialForgetting(1, alpha, beta, seed=SEED)

# Helper function for simulation
rng = numpy.random.default_rng(seed=SEED)

def simulate_arbitrary_traj(ef, k_vector, deltas):
    recall = []
    for k, d in zip(k_vector, deltas):
        ef.update(0, 0, N=k)
        recall.append(ef.query_item(0, d))
    return recall

# ============== Simulate some data
k_vector = rng.integers(low=0, high=10, size=N)
deltas = rng.integers(low=1, high=5000, size=N)
recall_probs = simulate_arbitrary_traj(ef, k_vector, deltas)
recall = [rp[0] for rp in recall_probs]
k_repetition = [k - 1 for k in k_vector]

# ================ Run diagnostics
# some options that you can set to tweak the diagnostics output
exponent_kwargs = dict(xbins=15, inf_to_int=None)
loglogplot_kwargs = dict(x_bins=7, mode="lin")
# Run the diagnostics
fig, (fg, ax, estim) = diagnostics(
    alpha,
    beta,
    k_repetition,
    deltas,
    recall,
    exponent_kwargs=exponent_kwargs,
    loglogplot_kwargs=loglogplot_kwargs,
)
plt.tight_layout()
plt.show()

# ==================== Perform ML Estimation
# Solver parameters; this should work well and be quite fast
optim_kwargs = {"method": "L-BFGS-B", "bounds": [(1e-5, 0.1), (0, 0.99)]}
verbose = False
guess = (1e-2, 0.5)
# Pass all the observed data to the inference function. You can use basin_hopping for more precise estimates but this will take more time, see actr.py for an example. Returns the output of scipy.optimize
inference_results = identify_ef_from_recall_sequence(
    recall_sequence=recall,
    deltas=deltas,
    k_vector=k_repetition,
    optim_kwargs=optim_kwargs,
    verbose=verbose,
    guess=guess,
    basin_hopping=False,
    basin_hopping_kwargs=None,
)

## ==== computing Confidence Intervals and Ellipses

# Get observed information matrix
J = ef_observed_information_matrix(
    recall, deltas, *inference_results.x, k_vector=k_repetition
)

fig, axs = plt.subplots(nrows=1, ncols=2)

# Compute covariance matrix:
covar = numpy.linalg.inv(J)
# get 95% confidence intervals
cis = CI_asymptotical(covar, inference_results.x, critical_value=1.96)
ax_lin = confidence_ellipse(inference_results.x, covar, ax=axs[0])

# with log transform --- should be better
transformed_covar = covar_delta_method_log_alpha(inference_results.x[0], covar)
x = [numpy.log10(inference_results.x[0]), inference_results.x[1]]
cis = CI_asymptotical(transformed_covar, x, critical_value=1.96)
ax_log = confidence_ellipse(x, transformed_covar, ax=axs[1])
ax_lin.set_title("CE with linear scale")
ax_log.set_title("CE with alpha log scale")
plt.tight_layout()
plt.show()

# ========== An example of inference when using a BlockBasedSchedule
# Define a blockbasedschedule
schedule = BlockBasedSchedule(
    1,
    5,
    [200, 200, 200, 200, 2000, 86400, 200, 2000],
    repet_trials=1,
    seed=123,
    sigma_t=None,
)
# Alternative way of defining a population as a list
population_model = [
    ExponentialForgetting(1, 10 ** (-2.5), 0.75, seed=None) for i in range(200)
]

data = experiment(
    population_model,
    schedule,
    test_blocks=[
        1,
        3,
        5,
        6,
        8,
    ],  # If there are learning vs recall blocks, define which are the test blocks. This changes behavior of the memory model (false recall during test does not count as an extra repetition in the models)
    replications=1,  # untested for != 1, but is not useful
)

# make a big one D array out of the recall data, and get the corresponding deltas and ks
r, d, k = flatten(
    data,
    schedule=schedule,
    population_model=population_model,
    test_blocks=[1, 3, 5, 6, 8],
    get_k_delta=True,
    replications=1,
)

# infer model parameters
optim_kwargs = {"method": "L-BFGS-B", "bounds": [(1e-5, 0.1), (0, 0.99)]}
verbose = False
guess = (1e-2, 0.5)
# Pass all the observed data to the inference function. You can use basin_hopping for more precise estimates but this will take more time, see actr.py for an example. Returns the output of scipy.optimize
inference_results = identify_ef_from_recall_sequence(
    recall_sequence=r,
    deltas=d,
    k_vector=k,
    optim_kwargs=optim_kwargs,
    verbose=verbose,
    guess=guess,
    basin_hopping=False,
    basin_hopping_kwargs=None,
)
J = ef_observed_information_matrix(r, d, *inference_results.x, k_vector=k)
covar = numpy.linalg.inv(J)
# get 95% confidence intervals
transformed_covar = covar_delta_method_log_alpha(inference_results.x[0], covar)
x = [numpy.log10(inference_results.x[0]), inference_results.x[1]]
cis = CI_asymptotical(transformed_covar, x, critical_value=1.96)
print(cis)