coopihc.inference.CascadedInferenceEngine.CascadedInferenceEngine
- class CascadedInferenceEngine(engine_list, *args, **kwargs)[source]
- Bases: - coopihc.inference.BaseInferenceEngine.BaseInferenceEngine- ExampleInferenceEngine - Combine two or more inference engines serially. Example code: - first_inference_engine = ProvideLikelihoodInferenceEngine(perceptualnoise) second_inference_engine = LinearGaussianContinuous() inference_engine = CascadedInferenceEngine( [first_inference_engine, second_inference_engine] ) - Methods - add observation - Bind function to the engine with a given name. - Apply this decorator to use self.agent_observation as default value to infer from if agent_observation = None - infer- render- reset _summary_ - Attributes - The agent's last action - host- The last observation. - role- The current agent state - unwrapped- add_observation(observation)[source]
- add observation - Add an observation to a buffer. If the buffer does not exist, create a naive buffer. The buffer has a size given by buffer length - Parameters
- observation ( - State) – observation produced by an engine
 
 - bind(func, as_name=None)
- Bind function to the engine with a given name. If as_name is None, then the func name is used. - Parameters
- func (function) – function to bind 
- as_name (string, optional) – name of resulting method, defaults to None 
 
- Returns
- bound method 
- Return type
- method 
 
 - default_value()
- Apply this decorator to use self.agent_observation as default value to infer from if agent_observation = None 
 - reset(random=True)
- reset _summary_ - Empty the buffer - Parameters
- random (bool, optional) – whether to randomize parameters internal to the inference engine. This is provided in case of subclass the BaseInferenceEngine, defaults to True.