coopihczoo.teaching.scripts_to_sort.behavioral_cloning_original.Trajectory¶
- class coopihczoo.teaching.scripts_to_sort.behavioral_cloning_original.Trajectory(obs: numpy.ndarray, acts: numpy.ndarray, infos: Optional[numpy.ndarray], terminal: bool)[source]¶
- Bases: - object- A trajectory, e.g. a one episode rollout from an expert policy. - Methods - Attributes - Observations, shape (trajectory_len + 1, ) + observation_shape. - Actions, shape (trajectory_len, ) + action_shape. - An array of info dicts, length trajectory_len. - Does this trajectory (fragment) end in a terminal state? - acts: numpy.ndarray¶
- Actions, shape (trajectory_len, ) + action_shape. 
 - infos: Optional[numpy.ndarray]¶
- An array of info dicts, length trajectory_len. 
 - obs: numpy.ndarray¶
- Observations, shape (trajectory_len + 1, ) + observation_shape. 
 - terminal: bool¶
- Does this trajectory (fragment) end in a terminal state? - Episodes are always terminal. Trajectory fragments are also terminal when they contain the final state of an episode (even if missing the start of the episode).