coopihczoo.teaching.scripts_to_sort.behavioral_cloning_original.Trajectory¶
- class coopihczoo.teaching.scripts_to_sort.behavioral_cloning_original.Trajectory(obs: numpy.ndarray, acts: numpy.ndarray, infos: Optional[numpy.ndarray], terminal: bool)[source]¶
Bases:
object
A trajectory, e.g. a one episode rollout from an expert policy.
Methods
Attributes
Observations, shape (trajectory_len + 1, ) + observation_shape.
Actions, shape (trajectory_len, ) + action_shape.
An array of info dicts, length trajectory_len.
Does this trajectory (fragment) end in a terminal state?
- acts: numpy.ndarray¶
Actions, shape (trajectory_len, ) + action_shape.
- infos: Optional[numpy.ndarray]¶
An array of info dicts, length trajectory_len.
- obs: numpy.ndarray¶
Observations, shape (trajectory_len + 1, ) + observation_shape.
- terminal: bool¶
Does this trajectory (fragment) end in a terminal state?
Episodes are always terminal. Trajectory fragments are also terminal when they contain the final state of an episode (even if missing the start of the episode).